Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.

Identifieur interne : 000123 ( Main/Exploration ); précédent : 000122; suivant : 000124

Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.

Auteurs : Isabelle Laforest-Lapointe [Canada] ; Christian Messier [Canada] ; Steven W. Kembel [Canada]

Source :

RBID : pubmed:29238751

Abstract

Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.

DOI: 10.1128/mSystems.00087-17
PubMed: 29238751
PubMed Central: PMC5715107


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.</title>
<author>
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Messier, Christian" sort="Messier, Christian" uniqKey="Messier C" first="Christian" last="Messier">Christian Messier</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institut des Sciences de la Forêt tempérée, Université du Québec en Outaouais, Ripon, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut des Sciences de la Forêt tempérée, Université du Québec en Outaouais, Ripon, Québec</wicri:regionArea>
<wicri:noRegion>Québec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kembel, Steven W" sort="Kembel, Steven W" uniqKey="Kembel S" first="Steven W" last="Kembel">Steven W. Kembel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017 Nov-Dec</date>
<idno type="RBID">pubmed:29238751</idno>
<idno type="pmid">29238751</idno>
<idno type="doi">10.1128/mSystems.00087-17</idno>
<idno type="pmc">PMC5715107</idno>
<idno type="wicri:Area/Main/Corpus">000121</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000121</idno>
<idno type="wicri:Area/Main/Curation">000121</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000121</idno>
<idno type="wicri:Area/Main/Exploration">000121</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.</title>
<author>
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Messier, Christian" sort="Messier, Christian" uniqKey="Messier C" first="Christian" last="Messier">Christian Messier</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institut des Sciences de la Forêt tempérée, Université du Québec en Outaouais, Ripon, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut des Sciences de la Forêt tempérée, Université du Québec en Outaouais, Ripon, Québec</wicri:regionArea>
<wicri:noRegion>Québec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kembel, Steven W" sort="Kembel, Steven W" uniqKey="Kembel S" first="Steven W" last="Kembel">Steven W. Kembel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSystems</title>
<idno type="ISSN">2379-5077</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the
<i>Alphaproteobacteria</i>
. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.
<b>IMPORTANCE</b>
In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29238751</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2379-5077</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>6</Issue>
<PubDate>
<MedlineDate>2017 Nov-Dec</MedlineDate>
</PubDate>
</JournalIssue>
<Title>mSystems</Title>
<ISOAbbreviation>mSystems</ISOAbbreviation>
</Journal>
<ArticleTitle>Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00087-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSystems.00087-17</ELocationID>
<Abstract>
<AbstractText>Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the
<i>Alphaproteobacteria</i>
. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.
<b>IMPORTANCE</b>
In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome studies have focused on the built environment, improving our understanding of indoor microbial communities but leaving much to be understood, especially in the nonbuilt microbiome. Here, we provide the first multiple-species comparison of tree phyllosphere bacterial structures and diversity along a gradient of urban intensity. We demonstrate that urban trees possess characteristic bacterial communities that differ from those seen with trees in nonurban environments, with microbial community structure on trees influenced by host species identity but also by the gradient of urban intensity and by the degree of isolation from other trees. Our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laforest-Lapointe</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">0000-0003-3630-9475</Identifier>
<AffiliationInfo>
<Affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Messier</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institut des Sciences de la Forêt tempérée, Université du Québec en Outaouais, Ripon, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kembel</LastName>
<ForeName>Steven W</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre d'étude de la forêt, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSystems</MedlineTA>
<NlmUniqueID>101680636</NlmUniqueID>
<ISSNLinking>2379-5077</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biodiversity</Keyword>
<Keyword MajorTopicYN="N">bioindicators</Keyword>
<Keyword MajorTopicYN="N">microbial communities</Keyword>
<Keyword MajorTopicYN="N">microbial ecology</Keyword>
<Keyword MajorTopicYN="N">phyllosphere-inhabiting microbes</Keyword>
<Keyword MajorTopicYN="N">plant-microbe interactions</Keyword>
<Keyword MajorTopicYN="N">urban gradient</Keyword>
<Keyword MajorTopicYN="N">urban microbiome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29238751</ArticleId>
<ArticleId IdType="doi">10.1128/mSystems.00087-17</ArticleId>
<ArticleId IdType="pii">mSystems00087-17</ArticleId>
<ArticleId IdType="pmc">PMC5715107</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Health Perspect. 2016 Dec;124(12 ):1919-1923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27232328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Syst. 2015 Jul 29;1(1):72-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26594662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Nov;12(11):2885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Dec;10(12):3317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2016 Nov 15;571:680-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27418518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Mar 1;30(5):614-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24142950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Apr;63(3):674-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 Nov;9(11):2454-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25978543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Apr;21(4):192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22278670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jun;4(6):719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2014 Sep;52(9):721-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25224504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Aug 16;5(1):86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28810907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2016 Jun 18;4(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27316353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 29;423(6939):528-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12774119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Apr;5(4):601-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21048802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 May;169(1):125-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22108853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 1;546(7656):145-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28538736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2008 Dec;105(6):1744-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19120625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Jul 15;487:187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24784743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indoor Air. 2014 Feb;24(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23621155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2014 Oct;68(3):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2016 Aug 24;4:e2367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27635335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 22;8(4):e61217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Jul;58(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19221834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2010;55:19-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19961321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2015 Aug;177:34-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26211964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Epidemiol Community Health. 2006 Jul;60(7):587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Aug 07;7:371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 30;312(5782):1917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20006534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jun 13;82(13):3822-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27107117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Jul 15;221(4607):277-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17815197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Public Health. 2014;35:207-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24387090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soc Sci Med. 2010 Aug;71(3):568-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20621750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jun 1;26(11):1463-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):496-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20180911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2014 Feb 24;2(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24558975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2002;47:233-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2011 Oct;21(7):2637-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22073649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jan 22;20(2):289-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14734327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2006 Oct;143(3):545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biometeorol. 2000 Aug;44(2):60-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2014 Mar 07;2(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24602274</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université du Québec à Montréal</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Québec">
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
</region>
<name sortKey="Kembel, Steven W" sort="Kembel, Steven W" uniqKey="Kembel S" first="Steven W" last="Kembel">Steven W. Kembel</name>
<name sortKey="Kembel, Steven W" sort="Kembel, Steven W" uniqKey="Kembel S" first="Steven W" last="Kembel">Steven W. Kembel</name>
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
<name sortKey="Messier, Christian" sort="Messier, Christian" uniqKey="Messier C" first="Christian" last="Messier">Christian Messier</name>
<name sortKey="Messier, Christian" sort="Messier, Christian" uniqKey="Messier C" first="Christian" last="Messier">Christian Messier</name>
<name sortKey="Messier, Christian" sort="Messier, Christian" uniqKey="Messier C" first="Christian" last="Messier">Christian Messier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000123 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000123 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29238751
   |texte=   Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29238751" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020